3.2 Monotonicity and Concavity

Lecturer: Xue Deng

How to determine the monotonicity and concavity of a function?

By the signs of the firstderivative and secondderivative of function!

Definition of Monotonicity

Let f be defined on an interval I (open, closed ,or neither). We say that
f is increasing on I if, for every pair of number x_{1} and x_{2} in I,

$$
x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)
$$

f is deceasing on I if, for every pair of number x_{1} and x_{2} in I,

$$
x_{1} \diamond x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)
$$

(3) f is strictly monotonic on I if it is either increasing on I or decreasing on I.

Theorem of Monotonicity

Th A: Let f be continuous on an interval I and differentiable at every interior point of I
(i) If $f^{\prime}(x)>0$ for all x interior to I, then f is increasing on I. (See Figure 1)
(ii) If $f^{\prime}(x)<0$ for all x interior to I, then f is decreasing on I.(See Figure 2)

Figure 1

Figure 2

Definition of Concavity

Let f be differentiable on an open interval I
(1) We say that f is concave up on I if f^{\prime} is increasing on I
(2) We say that f is concave down on I if f^{\prime} is decreasing on I

Theorem of Concavity

Th B : Let f be twice differentiable on the open interval I
(i) If $f^{\prime \prime}(x) \gg 0$ for all x in I, then f is concave up on I.

$f^{\prime}(x)$ increasing $f^{\prime \prime}(x)>0$
Figure 1
(ii) If $f^{\prime \prime}(x)<0$ for all x in I, then f is concave down on I.

$f^{\prime}(x)$ decreasing $f^{\prime \prime}(x)<0$
Figure 2

Definition of Inflection Point

Inflection Points :

Let f be continuous at c. We call $(c, f(c))$ an inflection point of the graph of f if f is concave up on one side of c and concave down on the other side.

Example 1

If $y=e^{x}-x-1$, find where f is increasing and where it is decreasing.

Domain is $(-\infty,+\infty)$.
$\because y^{\prime}=e^{x}-1$.
$\therefore(-\infty, 0), \quad y^{\prime}<0$,
$(0,+\infty), \quad y^{\prime}>0$,
\therefore The function is decreasing on $(-\infty, 0]$, increasing on $[0,+\infty)$.

Example 2

If $f(x)=2 x^{3}-9 x^{2}+12 x-3$, find where f is increasing and where it is decreasing.

Domain is $(-\infty,+\infty)$.

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}-18 x+12 \\
& =6(x-1)(x-2)
\end{aligned}
$$

By solving the equation $f^{\prime}(x)=0$,

We conclude that $x_{1}=1, x_{2}=2$.

x	$(-\infty, 1)$	$(1,2)$	$(2,+\infty)$
$f^{\prime}(x)$	+	-	+
$f(x)$	\nearrow	\nearrow	\nearrow

\therefore The function is decreasing on $[1,2]$ increasing on $(-\infty, 1]$ and $[2,+\infty)$.

Example 3

If $y=x^{3}$, find where y is concave up and where it is concave down.
$\because y^{\prime}=3 x^{2}, y^{\prime \prime}=6 x$,
$\therefore x<0, \quad y^{\prime \prime}<0$,
$\therefore y$ is concave down on $(-\infty, 0]$;
$\because x>0, y^{\prime \prime}>0$,

$\therefore y$ is concave up on $[0,+\infty)$.
青 The point $(0,0)$ is the inflection point from concaving up to concaving down

Example 4

Where is $f(x)=\frac{1}{3} x^{3}-x^{2}-3 x+4$ increasing, decreasing, concave up, concave down?

$$
\begin{aligned}
& f^{\prime}(x)=x^{2}-2 x-3=(x+1)(x-3) \quad(x=-1 \text { or } x=3) \\
& f^{\prime \prime}(x)=2 x-2=2(x-1) \quad(x=1) \\
& (x+1)(x-3)>0 \quad \therefore f \text { is increasing on }(-\infty,-1] \text { and }[3, \infty) . \\
& (x+1)(x-3)<0 \quad \therefore f \text { is decreasing on }[-1,3] . \\
& 2(x-1)>0 \quad \therefore f \text { is concave up on }(1, \infty) . \\
& 2(x-1)<0 \quad \therefore f \text { is concave down on }(-\infty, 1) .
\end{aligned}
$$

Example 5

Find all points of inflection of $F(x)=x^{1 / 3}+2$.

$$
\begin{aligned}
F^{\prime}(x) & =\frac{1}{3 x^{2 / 3}} \\
F^{\prime \prime}(x) & =\frac{-2}{9 x^{5 / 3}}
\end{aligned}
$$

The second derivative, $F^{\prime \prime}(x)$, is never 0 ;

However, it fails to exist at $x=0$.

The point $(0,2)$ is an inflection point since $F^{\prime \prime}(x)>0$ for $x<0$ and $F^{\prime \prime}(x)<0$ for $x>0$.

Summary of Monotonicity and Concavity

Monotonicity Th

Let f be continuous on an interval I and differentiable at every interior point of I
(1) If $f^{\prime}(x) \geqslant 0$ for all x interior to I, then f is increasing on I.
(2) If $f^{\prime}(x)<0$ for all x interior to I, then f is decreasing on I.

Concavity Th

Let f be twice differentiable on the open interval I
(1) If $f^{\prime \prime}(x)>0$ for all x in I, then f is concave up on I.
(2) If $f^{\prime \prime}(x)<0$ for all x in I, then f is concave down on I.

Questions and Answers

Q1: If $f(x)=2 x^{3}-3 x^{2}-12 x+7$,
find where f is increasing and where it is decreasing.
$\because f^{\prime}(x)=6 x^{2}-6 x-12=6\left(x^{2}-x-2\right)=6(x-2)(x+1)$,
\therefore The split points are -1 and 2 .
Table

x	$(-\infty,-1)$	$(-1,2)$	$(2,+\infty)$
$f^{\prime}(x)$	+	-	+
$f(x)$	\uparrow	\downarrow	\uparrow

$\therefore f(x)$ is increasing on $(-\infty,-1]$ and $[2,+\infty)$,
$f(x)$ is decreasing on ($-1,2$].

Questions and Answers

Q2: If $g(x)=\frac{x}{1+x^{2}}$, find where g is increasing and where g is decreasing.
$\because g^{\prime}(x)=\frac{(1-x)(1+x)}{\left(1+x^{2}\right)^{2}} \quad \rightarrow$ numerator $\quad \rightarrow$ denominator is positive at everywhere
\therefore The split points are -1 and 1 .
$\therefore g(x)$ is increasing on $[-1,1]$, $g(x)$ is decreasing on $(-\infty,-1]$ and $[1,+\infty)$.

Concavity

