


3.2 Monotonicity and Concavity

Lecturer: Xue Deng



How to determine the monotonicity and concavity of a function?

By the signs of the first derivative and  second derivative of function!



Definition of Monotonicity

Let f be defined on an interval I (open, closed ,or neither). We say that 

f is increasing on I if, for every pair of number       and     in I,

f is deceasing on I if, for every pair of number       and      in I,

f is strictly monotonic on I if it is either increasing on I or  decreasing on I.
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Theorem of Monotonicity
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Th A: Let f be continuous on an interval I and differentiable at every interior point of I

(i) If  for all  interior to ,
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(See Figure 1) (See Figure 2)
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Definition of Concavity

Let f be differentiable on an open interval I

(1)

(2)

We say that f is concave up on I if f ′ is increasing on I

We say that f is concave down on I if f ′ is decreasing on I  



Theorem of Concavity
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Th B: Let 𝑓 be twice differentiable on the open interval I 

(i) If  for all  in ,
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Let 𝑓 be continuous at 𝑐. We call 𝑐, 𝑓 𝑐

an inflection point of the graph of 𝑓 if 𝑓 is 

concave up on one side of 𝑐 and concave 

down on the other side.

Definition of Inflection Point

Inflection Points :



Example 1

If 1,find where  is increasing and where it is decreasing.xy e x f  

1.xy e  
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(0, ), 0,y 

( , ). Domain is

The function is decreasing on , 0]  increasing on [0, ).  (- ，  



Example 2
3 2If ( ) 2 9 12 3 find where  is increasing and where it is decreasing.f x x x x f    ，
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 By solving the equation ( ) 0 ,f x 

1 2We conclude that 1, 2.x x 
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Example 3
3If , find where  is concave up and where it is concave down.y x y

23 ,y x  6 ,y x 

0x  ， 0,y 

 is concave down on ( ,0]y  ；

0 0,x y ，
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 is concave up on [0, ).y 

The point (0,0) is the inflection point from concaving up to concaving down



Example 4

Where is 𝑓 𝑥 =
1

3
𝑥3 − 𝑥2 − 3𝑥 + 4 increasing, decreasing, 

concave up, concave down?

𝑓′ 𝑥 = 𝑥2 − 2𝑥 − 3 = 𝑥 + 1 𝑥 − 3 (𝑥 = − 1 or 𝑥 =3)

𝑓′′ 𝑥 = 2𝑥 − 2 = 2 𝑥 − 1 (𝑥 = 1)

𝑥 + 1 𝑥 − 3 > 0 ∴ 𝑓 is increasing on  −∞,  −1 and  3,  ∞ .

𝑥 + 1 𝑥 − 3 < 0 ∴ 𝑓 is decreasing on −1,3 .

2 𝑥 − 1 > 0 ∴ 𝑓 is concave up on 1,∞ .

2 𝑥 − 1 < 0 ∴ 𝑓 is concave down on −∞, 1 .



Example 5

Find all points of inflection of 𝐹 𝑥 = 𝑥  1 3 + 2.

𝐹′ 𝑥 =
1

3𝑥  2 3

𝐹′′ 𝑥 =
−2

9𝑥  5 3

The second derivative, 𝐹′′ 𝑥 , is never 0;

However, it fails to exist at 𝑥 = 0.

The point 0,2 is an inflection point since 𝐹′′ 𝑥 > 0 for 𝑥 < 0 and 𝐹′′ 𝑥 < 0 for 𝑥 > 0.



Summary of Monotonicity and Concavity

Let 𝑓 be continuous on an interval I and differentiable at every interior point of I

(1) If  for all  interior to ,then  is increas( ) 0 ing on .xx ff I I 

(2) If  for all  interior to ,then  is  ( ) decreasing on .0 x I f If x 

(1) If  for all  in ,then  is concav( ) e up on .0f f Ix x I 

(2) If  for all  in ,then  is concave down on .( ) 0 x I f If x 
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Let 𝑓 be twice differentiable on the open interval I 



Q1:   

Questions and Answers
3 2If ( ) 2 3 12 7,

find where  is increasing and where it is decreasing.
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The split point 1s are  and .2 

Table

( ) is increasing on ( , 1] and [2,+ ),

    ( ) is decreasing on ( 1,2].
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Q2:   

Questions and Answers

2
If ( ) ,find where  is increasing and where g is decreasing.
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 denominator is positive at everywhere

numerator

The split point 1s are  and .1 

( ) is increasing on [ 1,1],

   ( ) is decreasing on ( , 1] and [1,+ ).
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Monotonicity Concavity
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